Files
confique/macro/src/gen.rs
2021-11-03 16:01:57 +01:00

448 lines
14 KiB
Rust

use proc_macro2::{Span, TokenStream};
use quote::{ToTokens, format_ident, quote, quote_spanned};
use syn::{Ident, spanned::Spanned};
use crate::ir::{self, Expr, FieldKind, LeafKind};
pub(crate) fn gen(input: ir::Input) -> TokenStream {
let partial_mod = gen_partial_mod(&input);
let config_impl = gen_config_impl(&input);
quote! {
#config_impl
#partial_mod
}
}
fn gen_config_impl(input: &ir::Input) -> TokenStream {
let name = &input.name;
let (partial_mod_name, partial_struct_name) = partial_names(&input.name);
let field_names = input.fields.iter().map(|f| &f.name);
let from_exprs = input.fields.iter().map(|f| {
let field_name = &f.name;
let path = field_name.to_string();
match f.kind {
FieldKind::Nested { .. } => {
quote! {
confique::Config::from_partial(partial.#field_name).map_err(|e| {
confique::internal::prepend_missing_value_error(e, #path)
})?
}
}
FieldKind::Leaf { kind: LeafKind::Optional { .. }, .. } => {
quote! { partial.#field_name }
}
FieldKind::Leaf { kind: LeafKind::Required { .. }, .. } => {
quote! {
partial.#field_name
.ok_or(confique::internal::missing_value_error(#path.into()))?
}
}
}
});
let meta_item = gen_meta(input);
quote! {
#[automatically_derived]
impl confique::Config for #name {
type Partial = #partial_mod_name::#partial_struct_name;
fn from_partial(partial: Self::Partial) -> Result<Self, confique::Error> {
Ok(Self {
#( #field_names: #from_exprs, )*
})
}
#meta_item
}
}
}
/// Returns the names of the module and struct for the partial type:
/// `(mod_name, struct_name)`.
fn partial_names(original_name: &Ident) -> (Ident, Ident) {
use heck::SnakeCase;
(
format_ident!("confique_partial_{}", original_name.to_string().to_snake_case()),
format_ident!("Partial{}", original_name),
)
}
fn gen_partial_mod(input: &ir::Input) -> TokenStream {
let (mod_name, struct_name) = partial_names(&input.name);
let visibility = &input.visibility;
fn deserialize_fn_name(field_name: &Ident) -> Ident {
quote::format_ident!("deserialize_{}", field_name)
}
// Prepare some tokens per field.
let field_names = input.fields.iter().map(|f| &f.name).collect::<Vec<_>>();
let struct_fields = input.fields.iter().map(|f| {
let name = &f.name;
// We have to use the span of the field's name here so that error
// messages from the `derive(serde::Deserialize)` have the correct span.
let inner_vis = inner_visibility(&input.visibility, name.span());
match &f.kind {
FieldKind::Leaf { kind, deserialize_with, .. } => {
let ty = kind.inner_ty();
let attr = match deserialize_with {
None => quote! {},
Some(p) => {
// let s = p.to_token_stream().to_string();
let fn_name = deserialize_fn_name(&f.name).to_string();
quote_spanned! {p.span()=>
#[serde(default, deserialize_with = #fn_name)]
}
}
};
let main = quote_spanned! {name.span()=> #inner_vis #name: Option<#ty> };
quote! { #attr #main }
}
FieldKind::Nested { ty } => {
let ty_span = ty.span();
let field_ty = quote_spanned! {ty_span=> <#ty as confique::Config>::Partial };
quote! {
#[serde(default = "confique::Partial::empty")]
#inner_vis #name: #field_ty
}
},
}
});
let empty_values = input.fields.iter().map(|f| {
if f.is_leaf() {
quote! { None }
} else {
quote! { confique::Partial::empty() }
}
});
let defaults = input.fields.iter().map(|f| {
match &f.kind {
FieldKind::Leaf {
kind: LeafKind::Required { default: Some(default), .. },
deserialize_with,
..
} => {
let msg = format!(
"default config value for `{}::{}` cannot be deserialized",
input.name,
f.name,
);
match deserialize_with {
None => quote! {
Some(confique::internal::deserialize_default(#default).expect(#msg))
},
Some(p) => quote! {
Some(#p(confique::internal::into_deserializer(#default)).expect(#msg))
},
}
}
FieldKind::Leaf { .. } => quote! { None },
FieldKind::Nested { .. } => quote! { confique::Partial::default_values() },
}
});
let from_env_fields = input.fields.iter().map(|f| {
match &f.kind {
FieldKind::Leaf { env: Some(key), .. } => {
let field = format!("{}::{}", input.name, f.name);
quote! {
confique::internal::from_env(#key, #field)?
}
}
FieldKind::Leaf { .. } => quote! { None },
FieldKind::Nested { .. } => quote! { confique::Partial::from_env()? },
}
});
let fallbacks = input.fields.iter().map(|f| {
let name = &f.name;
if f.is_leaf() {
quote! { self.#name.or(fallback.#name) }
} else {
quote! { self.#name.with_fallback(fallback.#name) }
}
});
let is_empty_exprs = input.fields.iter().map(|f| {
let name = &f.name;
if f.is_leaf() {
quote! { self.#name.is_none() }
} else {
quote! { self.#name.is_empty() }
}
});
let is_complete_expr = input.fields.iter().map(|f| {
let name = &f.name;
match &f.kind {
FieldKind::Leaf { kind, .. } => {
if kind.is_required() {
quote! { self.#name.is_some() }
} else {
quote! { true }
}
}
FieldKind::Nested { .. } => quote! { self.#name.is_complete() },
}
});
let deserialize_fns = input.fields.iter().filter_map(|f| {
match &f.kind {
FieldKind::Leaf { kind, deserialize_with: Some(p), .. } => {
let fn_name = deserialize_fn_name(&f.name);
let ty = kind.inner_ty();
Some(quote! {
fn #fn_name<'de, D>(deserializer: D) -> Result<Option<#ty>, D::Error>
where
D: serde::Deserializer<'de>,
{
#p(deserializer).map(Some)
}
})
}
_ => None,
}
});
let nested_bounds = input.fields.iter().filter_map(|f| {
match &f.kind {
FieldKind::Nested { ty } => Some(quote! { #ty: confique::Config }),
FieldKind::Leaf { .. } => None,
}
});
let struct_visibility = inner_visibility(&input.visibility, Span::call_site());
quote! {
#visibility mod #mod_name {
use super::*;
#[derive(confique::serde::Deserialize)]
#struct_visibility struct #struct_name {
#( #struct_fields, )*
}
#[automatically_derived]
impl confique::Partial for #struct_name where #( #nested_bounds, )* {
fn empty() -> Self {
Self {
#( #field_names: #empty_values, )*
}
}
fn default_values() -> Self {
Self {
#( #field_names: #defaults, )*
}
}
fn from_env() -> Result<Self, confique::Error> {
Ok(Self {
#( #field_names: #from_env_fields, )*
})
}
fn with_fallback(self, fallback: Self) -> Self {
Self {
#( #field_names: #fallbacks, )*
}
}
fn is_empty(&self) -> bool {
true #(&& #is_empty_exprs)*
}
fn is_complete(&self) -> bool {
true #(&& #is_complete_expr)*
}
}
#(#deserialize_fns)*
}
}
}
/// Generates the whole `const META` item.
fn gen_meta(input: &ir::Input) -> TokenStream {
fn env_tokens(env: &Option<String>) -> TokenStream {
match env {
Some(key) => quote! { Some(#key) },
None => quote! { None },
}
}
let name_str = input.name.to_string();
let doc = &input.doc;
let meta_fields = input.fields.iter().map(|f| {
let name = f.name.to_string();
let doc = &f.doc;
let kind = match &f.kind {
FieldKind::Nested { ty }=> {
quote! {
confique::meta::FieldKind::Nested { meta: &<#ty as confique::Config>::META }
}
}
FieldKind::Leaf { env, kind: LeafKind::Optional { .. }, ..} => {
let env = env_tokens(env);
quote! {
confique::meta::FieldKind::Leaf {
env: #env,
kind: confique::meta::LeafKind::Optional,
}
}
}
FieldKind::Leaf { env, kind: LeafKind::Required { default, ty, .. }, ..} => {
let env = env_tokens(env);
let default_value = gen_meta_default(default, &ty);
quote! {
confique::meta::FieldKind::Leaf {
env: #env,
kind: confique::meta::LeafKind::Required {
default: #default_value,
},
}
}
}
};
quote! {
confique::meta::Field {
name: #name,
doc: &[ #(#doc),* ],
kind: #kind,
}
}
});
quote! {
const META: confique::meta::Meta = confique::meta::Meta {
name: #name_str,
doc: &[ #(#doc),* ],
fields: &[ #( #meta_fields ),* ],
};
}
}
/// Generates the meta expression of type `meta::Expr` to be used for the
/// `default` field.
fn gen_meta_default(default: &Option<Expr>, ty: &syn::Type) -> TokenStream {
fn int_type_to_variant(suffix: &str) -> Option<&'static str> {
match suffix {
"u8" => Some("U8"),
"u16" => Some("U16"),
"u32" => Some("U32"),
"u64" => Some("U64"),
"u128" => Some("U128"),
"usize" => Some("Usize"),
"i8" => Some("I8"),
"i16" => Some("I16"),
"i32" => Some("I32"),
"i64" => Some("I64"),
"i128" => Some("I128"),
"isize" => Some("Isize"),
_ => None,
}
}
fn float_type_to_variant(suffix: &str) -> Option<&'static str> {
match suffix {
"f32" => Some("F32"),
"f64" => Some("F64"),
_ => None,
}
}
// To figure out the type of int or float literals, we first look at the
// type suffix of the literal. If it is specified, we use that. Otherwise
// we check if the field type is a known float/integer type. If so, we use
// that. Otherwise we use a default.
fn infer_type(
suffix: &str,
field_ty: &syn::Type,
default: &str,
map: fn(&str) -> Option<&'static str>,
) -> Ident {
let variant = int_type_to_variant(suffix)
.or_else(|| {
if let syn::Type::Path(syn::TypePath { qself: None, path }) = field_ty {
path.get_ident().and_then(|i| map(&i.to_string()))
} else {
None
}
})
.unwrap_or(default);
Ident::new(variant, Span::call_site())
}
if let Some(default) = default {
let v = match default {
Expr::Bool(v) => quote! { confique::meta::Expr::Bool(#v) },
Expr::Str(s) => quote! { confique::meta::Expr::Str(#s) },
Expr::Int(i) => {
let variant = infer_type(i.suffix(), ty, "I32", int_type_to_variant);
quote! { confique::meta::Expr::Integer(confique::meta::Integer::#variant(#i)) }
}
Expr::Float(f) => {
let variant = infer_type(f.suffix(), ty, "F64", float_type_to_variant);
quote! { confique::meta::Expr::Float(confique::meta::Float::#variant(#f)) }
}
};
quote! { Some(#v) }
} else {
quote! { None }
}
}
impl ToTokens for ir::Expr {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Self::Str(lit) => lit.to_tokens(tokens),
Self::Int(lit) => lit.to_tokens(tokens),
Self::Float(lit) => lit.to_tokens(tokens),
Self::Bool(lit) => lit.to_tokens(tokens),
}
}
}
fn inner_visibility(outer: &syn::Visibility, span: Span) -> TokenStream {
match outer {
// These visibilities can be used as they are. No adjustment needed.
syn::Visibility::Public(_) | syn::Visibility::Crate(_) => quote_spanned! {span=> outer },
// The inherited one is relative to the parent module.
syn::Visibility::Inherited => quote_spanned! {span=> pub(super) },
// For `pub(crate)`
syn::Visibility::Restricted(r) if r.path.is_ident("crate") && r.in_token.is_none() => {
quote_spanned! {span=> pub(crate) }
},
// If the path in the `pub(in <path>)` visibility is absolute, we can
// use it like that as well.
syn::Visibility::Restricted(r) if r.path.leading_colon.is_some() => {
quote_spanned! {span=> outer }
},
// But in the case `pub(in <path>)` with a relative path, we have to
// prefix `super::`.
syn::Visibility::Restricted(r) => {
let path = &r.path;
quote_spanned! {span=> pub(in super::#path) }
}
}
}