make regen-apis

This commit is contained in:
OMGeeky
2023-10-23 12:55:17 +02:00
parent 8fc78fe0ae
commit c356d5fd0e
887 changed files with 9716 additions and 8753 deletions

View File

@@ -121,8 +121,8 @@ let mut hub = Bigquery::new(hyper::Client::builder().build(hyper_rustls::HttpsCo
// execute the final call using `doit()`.
// Values shown here are possibly random and not representative !
let result = hub.tables().get("projectId", "datasetId", "tableId")
.view("ipsum")
.selected_fields("voluptua.")
.view(&Default::default())
.selected_fields("ipsum")
.doit().await;
match result {

View File

@@ -73,8 +73,8 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
if let Some(value) = self._delete_contents.as_ref() {
params.push("deleteContents", value.to_string());
}
@@ -342,8 +342,8 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.extend(self._additional_params.iter());
@@ -618,7 +618,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("projectId", &self._project_id);
params.extend(self._additional_params.iter());
@@ -855,9 +855,9 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.datasets().list("projectId")
/// .page_token("sed")
/// .max_results(64)
/// .filter("gubergren")
/// .page_token("ipsum")
/// .max_results(13)
/// .filter("amet")
/// .all(true)
/// .doit().await;
/// # }
@@ -907,7 +907,7 @@ where
}
let mut params = Params::with_capacity(7 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("projectId", &self._project_id);
if let Some(value) = self._page_token.as_ref() {
params.push("pageToken", value);
}
@@ -1213,8 +1213,8 @@ where
}
let mut params = Params::with_capacity(5 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.extend(self._additional_params.iter());
@@ -1513,8 +1513,8 @@ where
}
let mut params = Params::with_capacity(5 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.extend(self._additional_params.iter());
@@ -1761,7 +1761,7 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.jobs().cancel("projectId", "jobId")
/// .location("Lorem")
/// .location("ipsum")
/// .doit().await;
/// # }
/// ```
@@ -1808,8 +1808,8 @@ where
}
let mut params = Params::with_capacity(5 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("jobId", self._job_id);
params.push("projectId", &self._project_id);
params.push("jobId", &self._job_id);
if let Some(value) = self._location.as_ref() {
params.push("location", value);
}
@@ -2043,7 +2043,7 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.jobs().delete("projectId", "jobId")
/// .location("sed")
/// .location("ea")
/// .doit().await;
/// # }
/// ```
@@ -2090,8 +2090,8 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("jobId", self._job_id);
params.push("projectId", &self._project_id);
params.push("jobId", &self._job_id);
if let Some(value) = self._location.as_ref() {
params.push("location", value);
}
@@ -2314,7 +2314,7 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.jobs().get("projectId", "jobId")
/// .location("no")
/// .location("eos")
/// .doit().await;
/// # }
/// ```
@@ -2361,8 +2361,8 @@ where
}
let mut params = Params::with_capacity(5 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("jobId", self._job_id);
params.push("projectId", &self._project_id);
params.push("jobId", &self._job_id);
if let Some(value) = self._location.as_ref() {
params.push("location", value);
}
@@ -2596,11 +2596,11 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.jobs().get_query_results("projectId", "jobId")
/// .timeout_ms(77)
/// .start_index(58)
/// .page_token("et")
/// .max_results(33)
/// .location("vero")
/// .timeout_ms(31)
/// .start_index(21)
/// .page_token("no")
/// .max_results(86)
/// .location("kasd")
/// .doit().await;
/// # }
/// ```
@@ -2651,8 +2651,8 @@ where
}
let mut params = Params::with_capacity(9 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("jobId", self._job_id);
params.push("projectId", &self._project_id);
params.push("jobId", &self._job_id);
if let Some(value) = self._timeout_ms.as_ref() {
params.push("timeoutMs", value.to_string());
}
@@ -2977,7 +2977,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("projectId", &self._project_id);
params.extend(self._additional_params.iter());
@@ -3118,7 +3118,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("projectId", &self._project_id);
params.extend(self._additional_params.iter());
@@ -3463,14 +3463,14 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.jobs().list("projectId")
/// .add_state_filter("duo")
/// .projection("dolore")
/// .add_state_filter(&Default::default())
/// .projection(&Default::default())
/// .parent_job_id("et")
/// .page_token("voluptua.")
/// .min_creation_time(99)
/// .max_results(5)
/// .max_creation_time(9)
/// .all_users(true)
/// .page_token("et")
/// .min_creation_time(25)
/// .max_results(70)
/// .max_creation_time(8)
/// .all_users(false)
/// .doit().await;
/// # }
/// ```
@@ -3479,8 +3479,8 @@ pub struct JobListCall<'a, S>
pub(super) hub: &'a Bigquery<S>,
pub(super) _project_id: String,
pub(super) _state_filter: Vec<String>,
pub(super) _projection: Option<String>,
pub(super) _state_filter: Option<JobStateFilterEnum>,
pub(super) _projection: Option<JobProjectionEnum>,
pub(super) _parent_job_id: Option<String>,
pub(super) _page_token: Option<String>,
pub(super) _min_creation_time: Option<u64>,
@@ -3523,7 +3523,7 @@ where
}
let mut params = Params::with_capacity(11 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("projectId", &self._project_id);
if self._state_filter.len() > 0 {
for f in self._state_filter.iter() {
params.push("stateFilter", f);
@@ -3668,15 +3668,15 @@ where
///
/// Append the given value to the *state filter* query property.
/// Each appended value will retain its original ordering and be '/'-separated in the URL's parameters.
pub fn add_state_filter(mut self, new_value: &str) -> JobListCall<'a, S> {
self._state_filter.push(new_value.to_string());
pub fn add_state_filter(mut self, new_value: &JobStateFilterEnum) -> JobListCall<'a, S> {
self._state_filter.push(new_value.clone());
self
}
/// Restrict information returned to a set of selected fields
///
/// Sets the *projection* query property to the given value.
pub fn projection(mut self, new_value: &str) -> JobListCall<'a, S> {
self._projection = Some(new_value.to_string());
pub fn projection(mut self, new_value: &JobProjectionEnum) -> JobListCall<'a, S> {
self._projection = Some(new_value.clone());
self
}
/// If set, retrieves only jobs whose parent is this job. Otherwise, retrieves only jobs which have no parent
@@ -3871,7 +3871,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("projectId", &self._project_id);
params.extend(self._additional_params.iter());
@@ -4154,9 +4154,9 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("modelId", self._model_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("modelId", &self._model_id);
params.extend(self._additional_params.iter());
@@ -4425,9 +4425,9 @@ where
}
let mut params = Params::with_capacity(5 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("modelId", self._model_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("modelId", &self._model_id);
params.extend(self._additional_params.iter());
@@ -4661,8 +4661,8 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.models().list("projectId", "datasetId")
/// .page_token("Stet")
/// .max_results(25)
/// .page_token("vero")
/// .max_results(13)
/// .doit().await;
/// # }
/// ```
@@ -4710,8 +4710,8 @@ where
}
let mut params = Params::with_capacity(6 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
if let Some(value) = self._page_token.as_ref() {
params.push("pageToken", value);
}
@@ -5008,9 +5008,9 @@ where
}
let mut params = Params::with_capacity(6 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("modelId", self._model_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("modelId", &self._model_id);
params.extend(self._additional_params.iter());
@@ -5311,7 +5311,7 @@ where
}
let mut params = Params::with_capacity(3 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("projectId", &self._project_id);
params.extend(self._additional_params.iter());
@@ -5525,8 +5525,8 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.projects().list()
/// .page_token("ipsum")
/// .max_results(78)
/// .page_token("diam")
/// .max_results(40)
/// .doit().await;
/// # }
/// ```
@@ -5834,9 +5834,9 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("routineId", self._routine_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("routineId", &self._routine_id);
params.extend(self._additional_params.iter());
@@ -6107,9 +6107,9 @@ where
}
let mut params = Params::with_capacity(6 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("routineId", self._routine_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("routineId", &self._routine_id);
if let Some(value) = self._read_mask.as_ref() {
params.push("readMask", value.to_string());
}
@@ -6405,8 +6405,8 @@ where
}
let mut params = Params::with_capacity(5 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.extend(self._additional_params.iter());
@@ -6654,9 +6654,9 @@ where
/// // Values shown here are possibly random and not representative !
/// let result = hub.routines().list("projectId", "datasetId")
/// .read_mask(&Default::default())
/// .page_token("gubergren")
/// .max_results(27)
/// .filter("accusam")
/// .page_token("takimata")
/// .max_results(82)
/// .filter("gubergren")
/// .doit().await;
/// # }
/// ```
@@ -6706,8 +6706,8 @@ where
}
let mut params = Params::with_capacity(8 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
if let Some(value) = self._read_mask.as_ref() {
params.push("readMask", value.to_string());
}
@@ -7024,9 +7024,9 @@ where
}
let mut params = Params::with_capacity(6 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("routineId", self._routine_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("routineId", &self._routine_id);
params.extend(self._additional_params.iter());
@@ -7334,7 +7334,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("resource", self._resource);
params.push("resource", &self._resource);
params.extend(self._additional_params.iter());
@@ -7571,8 +7571,8 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.row_access_policies().list("projectId", "datasetId", "tableId")
/// .page_token("sadipscing")
/// .page_size(-6)
/// .page_token("amet.")
/// .page_size(-17)
/// .doit().await;
/// # }
/// ```
@@ -7621,9 +7621,9 @@ where
}
let mut params = Params::with_capacity(7 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("tableId", self._table_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("tableId", &self._table_id);
if let Some(value) = self._page_token.as_ref() {
params.push("pageToken", value);
}
@@ -7928,7 +7928,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("resource", self._resource);
params.push("resource", &self._resource);
params.extend(self._additional_params.iter());
@@ -8216,7 +8216,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("resource", self._resource);
params.push("resource", &self._resource);
params.extend(self._additional_params.iter());
@@ -8506,9 +8506,9 @@ where
}
let mut params = Params::with_capacity(6 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("tableId", self._table_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("tableId", &self._table_id);
params.extend(self._additional_params.iter());
@@ -8765,10 +8765,10 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.tabledata().list("projectId", "datasetId", "tableId")
/// .start_index(69)
/// .selected_fields("ipsum")
/// .page_token("et")
/// .max_results(93)
/// .start_index(66)
/// .selected_fields("tempor")
/// .page_token("aliquyam")
/// .max_results(96)
/// .doit().await;
/// # }
/// ```
@@ -8819,9 +8819,9 @@ where
}
let mut params = Params::with_capacity(9 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("tableId", self._table_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("tableId", &self._table_id);
if let Some(value) = self._start_index.as_ref() {
params.push("startIndex", value.to_string());
}
@@ -9141,9 +9141,9 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("tableId", self._table_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("tableId", &self._table_id);
params.extend(self._additional_params.iter());
@@ -9366,8 +9366,8 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.tables().get("projectId", "datasetId", "tableId")
/// .view("et")
/// .selected_fields("sed")
/// .view(&Default::default())
/// .selected_fields("dolores")
/// .doit().await;
/// # }
/// ```
@@ -9378,7 +9378,7 @@ pub struct TableGetCall<'a, S>
pub(super) _project_id: String,
pub(super) _dataset_id: String,
pub(super) _table_id: String,
pub(super) _view: Option<String>,
pub(super) _view: Option<TableViewEnum>,
pub(super) _selected_fields: Option<String>,
pub(super) _delegate: Option<&'a mut dyn client::Delegate>,
pub(super) _additional_params: HashMap<String, String>,
@@ -9416,9 +9416,9 @@ where
}
let mut params = Params::with_capacity(7 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("tableId", self._table_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("tableId", &self._table_id);
if let Some(value) = self._view.as_ref() {
params.push("view", value);
}
@@ -9562,8 +9562,8 @@ where
/// Specifies the view that determines which table information is returned. By default, basic table information and storage statistics (STORAGE_STATS) are returned.
///
/// Sets the *view* query property to the given value.
pub fn view(mut self, new_value: &str) -> TableGetCall<'a, S> {
self._view = Some(new_value.to_string());
pub fn view(mut self, new_value: &TableViewEnum) -> TableGetCall<'a, S> {
self._view = Some(new_value.clone());
self
}
/// List of fields to return (comma-separated). If unspecified, all fields are returned
@@ -9723,7 +9723,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("resource", self._resource);
params.push("resource", &self._resource);
params.extend(self._additional_params.iter());
@@ -10012,8 +10012,8 @@ where
}
let mut params = Params::with_capacity(5 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.extend(self._additional_params.iter());
@@ -10260,8 +10260,8 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.tables().list("projectId", "datasetId")
/// .page_token("nonumy")
/// .max_results(24)
/// .page_token("elitr")
/// .max_results(21)
/// .doit().await;
/// # }
/// ```
@@ -10309,8 +10309,8 @@ where
}
let mut params = Params::with_capacity(6 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
if let Some(value) = self._page_token.as_ref() {
params.push("pageToken", value);
}
@@ -10560,7 +10560,7 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.tables().patch(req, "projectId", "datasetId", "tableId")
/// .autodetect_schema(false)
/// .autodetect_schema(true)
/// .doit().await;
/// # }
/// ```
@@ -10609,9 +10609,9 @@ where
}
let mut params = Params::with_capacity(7 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("tableId", self._table_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("tableId", &self._table_id);
if let Some(value) = self._autodetect_schema.as_ref() {
params.push("autodetect_schema", value.to_string());
}
@@ -10929,7 +10929,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("resource", self._resource);
params.push("resource", &self._resource);
params.extend(self._additional_params.iter());
@@ -11217,7 +11217,7 @@ where
}
let mut params = Params::with_capacity(4 + self._additional_params.len());
params.push("resource", self._resource);
params.push("resource", &self._resource);
params.extend(self._additional_params.iter());
@@ -11460,7 +11460,7 @@ where
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.tables().update(req, "projectId", "datasetId", "tableId")
/// .autodetect_schema(false)
/// .autodetect_schema(true)
/// .doit().await;
/// # }
/// ```
@@ -11509,9 +11509,9 @@ where
}
let mut params = Params::with_capacity(7 + self._additional_params.len());
params.push("projectId", self._project_id);
params.push("datasetId", self._dataset_id);
params.push("tableId", self._table_id);
params.push("projectId", &self._project_id);
params.push("datasetId", &self._dataset_id);
params.push("tableId", &self._table_id);
if let Some(value) = self._autodetect_schema.as_ref() {
params.push("autodetect_schema", value.to_string());
}

View File

@@ -32,8 +32,8 @@ use super::*;
/// // execute the final call using `doit()`.
/// // Values shown here are possibly random and not representative !
/// let result = hub.tables().get("projectId", "datasetId", "tableId")
/// .view("gubergren")
/// .selected_fields("Lorem")
/// .view(&Default::default())
/// .selected_fields("duo")
/// .doit().await;
///
/// match result {

View File

@@ -30,3 +30,6 @@ pub use method_builders::*;
mod call_builders;
pub use call_builders::*;
mod enums;
pub use enums::*;

View File

@@ -45,14 +45,14 @@ pub struct Argument {
/// Optional. Defaults to FIXED_TYPE.
#[serde(rename="argumentKind")]
pub argument_kind: Option<String>,
pub argument_kind: Option<ArgumentArgumentKindEnum>,
/// Required unless argument_kind = ANY_TYPE.
#[serde(rename="dataType")]
pub data_type: Option<StandardSqlDataType>,
/// Optional. Specifies whether the argument is input or output. Can be set for procedures only.
pub mode: Option<String>,
pub mode: Option<ArgumentModeEnum>,
/// Optional. The name of this argument. Can be absent for function return argument.
pub name: Option<String>,
@@ -109,7 +109,7 @@ pub struct ArimaForecastingMetrics {
/// Seasonal periods. Repeated because multiple periods are supported for one time series.
#[serde(rename="seasonalPeriods")]
pub seasonal_periods: Option<Vec<String>>,
pub seasonal_periods: Option<Vec<ArimaForecastingMetricSeasonalPeriodsEnum>>,
/// Id to differentiate different time series for the large-scale case.
#[serde(rename="timeSeriesId")]
@@ -177,7 +177,7 @@ pub struct ArimaSingleModelForecastingMetrics {
/// Seasonal periods. Repeated because multiple periods are supported for one time series.
#[serde(rename="seasonalPeriods")]
pub seasonal_periods: Option<Vec<String>>,
pub seasonal_periods: Option<Vec<ArimaSingleModelForecastingMetricSeasonalPeriodsEnum>>,
/// The time_series_id value for this time series. It will be one of the unique values from the time_series_id_column specified during ARIMA model training. Only present when time_series_id_column training option was used.
#[serde(rename="timeSeriesId")]
@@ -224,7 +224,7 @@ pub struct AuditLogConfig {
/// The log type that this config enables.
#[serde(rename="logType")]
pub log_type: Option<String>,
pub log_type: Option<AuditLogConfigLogTypeEnum>,
}
impl client::Part for AuditLogConfig {}
@@ -910,7 +910,7 @@ pub struct DatasetAccessEntry {
/// no description provided
#[serde(rename="targetTypes")]
pub target_types: Option<Vec<String>>,
pub target_types: Option<Vec<DatasetAccessEntryTargetTypesEnum>>,
}
impl client::Part for DatasetAccessEntry {}
@@ -1816,7 +1816,7 @@ pub struct HparamTuningTrial {
pub start_time_ms: Option<i64>,
/// The status of the trial.
pub status: Option<String>,
pub status: Option<HparamTuningTrialStatusEnum>,
/// Loss computed on the training data at the end of trial.
#[serde(rename="trainingLoss")]
@@ -3064,7 +3064,7 @@ pub struct Model {
/// Output only. Type of the model resource.
#[serde(rename="modelType")]
pub model_type: Option<String>,
pub model_type: Option<ModelModelTypeEnum>,
/// Output only. For single-objective [hyperparameter tuning](https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, it only contains the best trial. For multi-objective [hyperparameter tuning](https://cloud.google.com/bigquery-ml/docs/reference/standard-sql/bigqueryml-syntax-hp-tuning-overview) models, it contains all Pareto optimal trials sorted by trial_id.
#[serde(rename="optimalTrialIds")]
@@ -3645,7 +3645,7 @@ pub struct Routine {
/// Optional. The determinism level of the JavaScript UDF, if defined.
#[serde(rename="determinismLevel")]
pub determinism_level: Option<String>,
pub determinism_level: Option<RoutineDeterminismLevelEnum>,
/// Output only. A hash of this resource.
pub etag: Option<String>,
@@ -3655,7 +3655,7 @@ pub struct Routine {
pub imported_libraries: Option<Vec<String>>,
/// Optional. Defaults to "SQL" if remote_function_options field is absent, not set otherwise.
pub language: Option<String>,
pub language: Option<RoutineLanguageEnum>,
/// Output only. The time when this routine was last modified, in milliseconds since the epoch.
#[serde(rename="lastModifiedTime")]
@@ -3680,7 +3680,7 @@ pub struct Routine {
/// Required. The type of routine.
#[serde(rename="routineType")]
pub routine_type: Option<String>,
pub routine_type: Option<RoutineRoutineTypeEnum>,
/// Optional. Spark specific options.
#[serde(rename="sparkOptions")]
@@ -4055,7 +4055,7 @@ pub struct StandardSqlDataType {
/// Required. The top level type of this field. Can be any standard SQL data type (e.g., "INT64", "DATE", "ARRAY").
#[serde(rename="typeKind")]
pub type_kind: Option<String>,
pub type_kind: Option<StandardSqlDataTypeTypeKindEnum>,
}
impl client::Part for StandardSqlDataType {}
@@ -4680,7 +4680,7 @@ pub struct TrainingOptions {
/// Booster type for boosted tree models.
#[serde(rename="boosterType")]
pub booster_type: Option<String>,
pub booster_type: Option<TrainingOptionBoosterTypeEnum>,
/// Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models.
#[serde(rename="calculatePValues")]
@@ -4692,7 +4692,7 @@ pub struct TrainingOptions {
/// Enums for color space, used for processing images in Object Table. See more details at https://www.tensorflow.org/io/tutorials/colorspace.
#[serde(rename="colorSpace")]
pub color_space: Option<String>,
pub color_space: Option<TrainingOptionColorSpaceEnum>,
/// Subsample ratio of columns for each level for boosted tree models.
#[serde(rename="colsampleBylevel")]
@@ -4708,11 +4708,11 @@ pub struct TrainingOptions {
/// Type of normalization algorithm for boosted tree models using dart booster.
#[serde(rename="dartNormalizeType")]
pub dart_normalize_type: Option<String>,
pub dart_normalize_type: Option<TrainingOptionDartNormalizeTypeEnum>,
/// The data frequency of a time series.
#[serde(rename="dataFrequency")]
pub data_frequency: Option<String>,
pub data_frequency: Option<TrainingOptionDataFrequencyEnum>,
/// The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type-properties
#[serde(rename="dataSplitColumn")]
@@ -4724,7 +4724,7 @@ pub struct TrainingOptions {
/// The data split type for training and evaluation, e.g. RANDOM.
#[serde(rename="dataSplitMethod")]
pub data_split_method: Option<String>,
pub data_split_method: Option<TrainingOptionDataSplitMethodEnum>,
/// If true, perform decompose time series and save the results.
#[serde(rename="decomposeTimeSeries")]
@@ -4732,7 +4732,7 @@ pub struct TrainingOptions {
/// Distance type for clustering models.
#[serde(rename="distanceType")]
pub distance_type: Option<String>,
pub distance_type: Option<TrainingOptionDistanceTypeEnum>,
/// Dropout probability for dnn models.
pub dropout: Option<f64>,
@@ -4747,7 +4747,7 @@ pub struct TrainingOptions {
/// Feedback type that specifies which algorithm to run for matrix factorization.
#[serde(rename="feedbackType")]
pub feedback_type: Option<String>,
pub feedback_type: Option<TrainingOptionFeedbackTypeEnum>,
/// Hidden units for dnn models.
#[serde(rename="hiddenUnits")]
@@ -4756,7 +4756,7 @@ pub struct TrainingOptions {
/// The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled.
#[serde(rename="holidayRegion")]
pub holiday_region: Option<String>,
pub holiday_region: Option<TrainingOptionHolidayRegionEnum>,
/// The number of periods ahead that need to be forecasted.
#[serde_as(as = "Option<::client::serde_with::DisplayFromStr>")]
@@ -4764,7 +4764,7 @@ pub struct TrainingOptions {
/// The target evaluation metrics to optimize the hyperparameters for.
#[serde(rename="hparamTuningObjectives")]
pub hparam_tuning_objectives: Option<Vec<String>>,
pub hparam_tuning_objectives: Option<Vec<TrainingOptionHparamTuningObjectivesEnum>>,
/// Include drift when fitting an ARIMA model.
#[serde(rename="includeDrift")]
@@ -4793,7 +4793,7 @@ pub struct TrainingOptions {
/// The method used to initialize the centroids for kmeans algorithm.
#[serde(rename="kmeansInitializationMethod")]
pub kmeans_initialization_method: Option<String>,
pub kmeans_initialization_method: Option<TrainingOptionKmeansInitializationMethodEnum>,
/// L1 regularization coefficient.
#[serde(rename="l1Regularization")]
@@ -4813,11 +4813,11 @@ pub struct TrainingOptions {
/// The strategy to determine learn rate for the current iteration.
#[serde(rename="learnRateStrategy")]
pub learn_rate_strategy: Option<String>,
pub learn_rate_strategy: Option<TrainingOptionLearnRateStrategyEnum>,
/// Type of loss function used during training run.
#[serde(rename="lossType")]
pub loss_type: Option<String>,
pub loss_type: Option<TrainingOptionLossTypeEnum>,
/// The maximum number of iterations in training. Used only for iterative training algorithms.
#[serde(rename="maxIterations")]
@@ -4887,7 +4887,7 @@ pub struct TrainingOptions {
/// Optimization strategy for training linear regression models.
#[serde(rename="optimizationStrategy")]
pub optimization_strategy: Option<String>,
pub optimization_strategy: Option<TrainingOptionOptimizationStrategyEnum>,
/// Whether to preserve the input structs in output feature names. Suppose there is a struct A with field b. When false (default), the output feature name is A_b. When true, the output feature name is A.b.
#[serde(rename="preserveInputStructs")]
@@ -4923,7 +4923,7 @@ pub struct TrainingOptions {
/// Tree construction algorithm for boosted tree models.
#[serde(rename="treeMethod")]
pub tree_method: Option<String>,
pub tree_method: Option<TrainingOptionTreeMethodEnum>,
/// The smoothing window size for the trend component of the time series.
#[serde(rename="trendSmoothingWindowSize")]

View File

@@ -122,8 +122,8 @@
//! // execute the final call using `doit()`.
//! // Values shown here are possibly random and not representative !
//! let result = hub.tables().get("projectId", "datasetId", "tableId")
//! .view("amet.")
//! .selected_fields("takimata")
//! .view(&Default::default())
//! .selected_fields("sed")
//! .doit().await;
//!
//! match result {