Files
gpt-pilot/pilot/utils/llm_connection.py
2023-08-25 14:21:41 +02:00

261 lines
9.5 KiB
Python

import requests
import os
import sys
import json
import tiktoken
import questionary
from typing import List
from jinja2 import Environment, FileSystemLoader
from const.llm import MIN_TOKENS_FOR_GPT_RESPONSE, MAX_GPT_MODEL_TOKENS, MAX_QUESTIONS, END_RESPONSE
from logger.logger import logger
from termcolor import colored
from utils.utils import get_prompt_components, fix_json
from utils.spinner import spinner_start, spinner_stop
def connect_to_llm():
pass
def get_prompt(prompt_name, data=None):
if data is None:
data = {}
data.update(get_prompt_components())
logger.debug(f"Getting prompt for {prompt_name}") # logging here
# Create a file system loader with the directory of the templates
file_loader = FileSystemLoader('prompts')
# Create the Jinja2 environment
env = Environment(loader=file_loader)
# Load the template
template = env.get_template(prompt_name)
# Render the template with the provided data
output = template.render(data)
return output
def get_tokens_in_messages(messages: List[str]) -> int:
tokenizer = tiktoken.get_encoding("cl100k_base") # GPT-4 tokenizer
tokenized_messages = [tokenizer.encode(message['content']) for message in messages]
return sum(len(tokens) for tokens in tokenized_messages)
def num_tokens_from_functions(functions, model="gpt-4"):
"""Return the number of tokens used by a list of functions."""
encoding = tiktoken.get_encoding("cl100k_base")
num_tokens = 0
for function in functions:
function_tokens = len(encoding.encode(function['name']))
function_tokens += len(encoding.encode(function['description']))
if 'parameters' in function:
parameters = function['parameters']
if 'properties' in parameters:
for propertiesKey in parameters['properties']:
function_tokens += len(encoding.encode(propertiesKey))
v = parameters['properties'][propertiesKey]
for field in v:
if field == 'type':
function_tokens += 2
function_tokens += len(encoding.encode(v['type']))
elif field == 'description':
function_tokens += 2
function_tokens += len(encoding.encode(v['description']))
elif field == 'enum':
function_tokens -= 3
for o in v['enum']:
function_tokens += 3
function_tokens += len(encoding.encode(o))
# else:
# print(f"Warning: not supported field {field}")
function_tokens += 11
num_tokens += function_tokens
num_tokens += 12
return num_tokens
def create_gpt_chat_completion(messages: List[dict], req_type, min_tokens=MIN_TOKENS_FOR_GPT_RESPONSE,
function_calls=None):
tokens_in_messages = round(get_tokens_in_messages(messages) * 1.2) # add 20% to account for not 100% accuracy
if function_calls is not None:
tokens_in_messages += round(
num_tokens_from_functions(function_calls['definitions']) * 1.2) # add 20% to account for not 100% accuracy
if tokens_in_messages + min_tokens > MAX_GPT_MODEL_TOKENS:
raise ValueError(f'Too many tokens in messages: {tokens_in_messages}. Please try a different test.')
gpt_data = {
'model': 'gpt-4',
'n': 1,
'max_tokens': min(4096, MAX_GPT_MODEL_TOKENS - tokens_in_messages),
'temperature': 1,
'top_p': 1,
'presence_penalty': 0,
'frequency_penalty': 0,
'messages': messages,
'stream': True
}
if function_calls is not None:
gpt_data['functions'] = function_calls['definitions']
if len(function_calls['definitions']) > 1:
gpt_data['function_call'] = 'auto'
else:
gpt_data['function_call'] = {'name': function_calls['definitions'][0]['name']}
try:
response = stream_gpt_completion(gpt_data, req_type)
return response
except Exception as e:
print(
'The request to OpenAI API failed. Here is the error message:')
print(e)
def delete_last_n_lines(n):
for _ in range(n):
# Move the cursor up one line
sys.stdout.write('\033[F')
# Clear the current line
sys.stdout.write('\033[K')
def count_lines_based_on_width(content, width):
lines_required = sum(len(line) // width + 1 for line in content.split('\n'))
return lines_required
def retry_on_exception(func):
def wrapper(*args, **kwargs):
while True:
try:
return func(*args, **kwargs)
except Exception as e:
print(colored(f'There was a problem with request to openai API:', 'red'))
print(str(e))
user_message = questionary.text(
"Do you want to try make the same request again? If yes, just press ENTER. Otherwise, type 'no'.",
style=questionary.Style([
('question', 'fg:red'),
('answer', 'fg:orange')
])).ask()
if user_message != '':
return {}
return wrapper
@retry_on_exception
def stream_gpt_completion(data, req_type):
terminal_width = os.get_terminal_size().columns
lines_printed = 2
buffer = "" # A buffer to accumulate incoming data
def return_result(result_data, lines_printed):
if buffer:
lines_printed += count_lines_based_on_width(buffer, terminal_width)
logger.info(f'lines printed: {lines_printed} - {terminal_width}')
delete_last_n_lines(lines_printed)
return result_data
# spinner = spinner_start(colored("Waiting for OpenAI API response...", 'yellow'))
# print(colored("Stream response from OpenAI:", 'yellow'))
api_key = os.getenv("OPENAI_API_KEY")
logger.info(f'Request data: {data}')
response = requests.post(
'https://api.openai.com/v1/chat/completions',
headers={'Content-Type': 'application/json', 'Authorization': 'Bearer ' + api_key},
json=data,
stream=True
)
# Log the response status code and message
logger.info(f'Response status code: {response.status_code}')
if response.status_code != 200:
logger.debug(f'problem with request: {response.text}')
raise Exception(f"API responded with status code: {response.status_code}. Response text: {response.text}")
gpt_response = ''
function_calls = {'name': '', 'arguments': ''}
for line in response.iter_lines():
# Ignore keep-alive new lines
if line:
line = line.decode("utf-8") # decode the bytes to string
if line.startswith('data: '):
line = line[6:] # remove the 'data: ' prefix
# Check if the line is "[DONE]" before trying to parse it as JSON
if line == "[DONE]":
continue
try:
json_line = json.loads(line)
if 'error' in json_line:
logger.error(f'Error in LLM response: {json_line}')
raise ValueError(f'Error in LLM response: {json_line["error"]["message"]}')
if json_line['choices'][0]['finish_reason'] == 'function_call':
function_calls['arguments'] = load_data_to_json(function_calls['arguments'])
return return_result({'function_calls': function_calls}, lines_printed);
json_line = json_line['choices'][0]['delta']
except json.JSONDecodeError:
logger.error(f'Unable to decode line: {line}')
continue # skip to the next line
if 'function_call' in json_line:
if 'name' in json_line['function_call']:
function_calls['name'] = json_line['function_call']['name']
print(f'Function call: {function_calls["name"]}')
if 'arguments' in json_line['function_call']:
function_calls['arguments'] += json_line['function_call']['arguments']
print(json_line['function_call']['arguments'], end='', flush=True)
if 'content' in json_line:
content = json_line.get('content')
if content:
buffer += content # accumulate the data
# If you detect a natural breakpoint (e.g., line break or end of a response object), print & count:
if buffer.endswith("\n"): # or some other condition that denotes a breakpoint
lines_printed += count_lines_based_on_width(buffer, terminal_width)
buffer = "" # reset the buffer
gpt_response += content
print(content, end='', flush=True)
print('\n')
if function_calls['arguments'] != '':
logger.info(f'Response via function call: {function_calls["arguments"]}')
function_calls['arguments'] = load_data_to_json(function_calls['arguments'])
return return_result({'function_calls': function_calls}, lines_printed)
logger.info(f'Response message: {gpt_response}')
new_code = postprocessing(gpt_response, req_type) # TODO add type dynamically
return return_result({'text': new_code}, lines_printed)
def postprocessing(gpt_response, req_type):
return gpt_response
def load_data_to_json(string):
return json.loads(fix_json(string))