mirror of
https://github.com/OMGeeky/tarpc.git
synced 2025-12-29 15:49:52 +01:00
1. Renames
Some of the items in this module were renamed to be less generic:
- Handler => Incoming
- ClientHandler => Requests
- ResponseHandler => InFlightRequest
- Channel::{respond_with => requests}
In the case of Handler: handler of *what*? Now it's a bit clearer that
this is a stream of Channels (aka *incoming* connections).
Similarly, ClientHandler was a stream of requests over a single
connection. Hopefully Requests better reflects that.
ResponseHandler was renamed InFlightRequest because it no longer
contains the serving function. Instead, it is just the request, plus
the response channel and an abort hook. As a result of this,
Channel::respond_with underwent a big change: it used to take the
serving function and return a ClientHandler; now it has been renamed
Channel::requests and does not take any args.
2. Execute methods
All methods thats actually result in responses being generated
have been consolidated into methods named `execute`:
- InFlightRequest::execute returns a future that completes when a
response has been generated and sent to the server Channel.
- Requests::execute automatically spawns response handlers for all
requests over a single channel.
- Channel::execute is a convenience for `channel.requests().execute()`.
- Incoming::execute automatically spawns response handlers for all
requests over all channels.
3. Removal of Server.
server::Server was removed, as it provided no value over the Incoming/Channel
abstractions. Additionally, server::new was removed, since it just
returned a Server.
// Copyright 2018 Google LLC
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.
use futures::{
future::{self, Ready},
prelude::*,
};
use std::io;
use tarpc::{
client, context,
server::{self, Channel},
};
use tokio_serde::formats::Json;
/// This is the service definition. It looks a lot like a trait definition.
/// It defines one RPC, hello, which takes one arg, name, and returns a String.
#[tarpc::service]
pub trait World {
async fn hello(name: String) -> String;
}
/// This is the type that implements the generated World trait. It is the business logic
/// and is used to start the server.
#[derive(Clone)]
struct HelloServer;
impl World for HelloServer {
// Each defined rpc generates two items in the trait, a fn that serves the RPC, and
// an associated type representing the future output by the fn.
type HelloFut = Ready<String>;
fn hello(self, _: context::Context, name: String) -> Self::HelloFut {
future::ready(format!("Hello, {}!", name))
}
}
#[tokio::main]
async fn main() -> io::Result<()> {
let (client_transport, server_transport) = tarpc::transport::channel::unbounded();
let server = server::BaseChannel::with_defaults(server_transport);
tokio::spawn(server.execute(HelloServer.serve()));
// WorldClient is generated by the #[tarpc::service] attribute. It has a constructor `new`
// that takes a config and any Transport as input.
let mut client = WorldClient::new(client::Config::default(), client_transport).spawn()?;
// The client has an RPC method for each RPC defined in the annotated trait. It takes the same
// args as defined, with the addition of a Context, which is always the first arg. The Context
// specifies a deadline and trace information which can be helpful in debugging requests.
let hello = client.hello(context::current(), "Stim".to_string()).await?;
println!("{}", hello);
Ok(())
}