Files
tarpc/tarpc/examples/readme.rs
Tim Kuehn e75193c191 Client RPCs now take &self.
This required the breaking change of removing the Client trait. The
intent of the Client trait was to facilitate the decorator pattern by
allowing users to create their own Clients that added behavior on top of
the base client. Unfortunately, this trait had become a maintenance
burden, consistently causing issues with lifetimes and the lack of
generic associated types. Specifically, it meant that Client impls could
not use async fns, which is no longer tenable today.
2021-03-07 17:41:29 -08:00

57 lines
1.9 KiB
Rust

// Copyright 2018 Google LLC
//
// Use of this source code is governed by an MIT-style
// license that can be found in the LICENSE file or at
// https://opensource.org/licenses/MIT.
use futures::future::{self, Ready};
use std::io;
use tarpc::{
client, context,
server::{self, Channel},
};
/// This is the service definition. It looks a lot like a trait definition.
/// It defines one RPC, hello, which takes one arg, name, and returns a String.
#[tarpc::service]
pub trait World {
async fn hello(name: String) -> String;
}
/// This is the type that implements the generated World trait. It is the business logic
/// and is used to start the server.
#[derive(Clone)]
struct HelloServer;
impl World for HelloServer {
// Each defined rpc generates two items in the trait, a fn that serves the RPC, and
// an associated type representing the future output by the fn.
type HelloFut = Ready<String>;
fn hello(self, _: context::Context, name: String) -> Self::HelloFut {
future::ready(format!("Hello, {}!", name))
}
}
#[tokio::main]
async fn main() -> io::Result<()> {
let (client_transport, server_transport) = tarpc::transport::channel::unbounded();
let server = server::BaseChannel::with_defaults(server_transport);
tokio::spawn(server.execute(HelloServer.serve()));
// WorldClient is generated by the #[tarpc::service] attribute. It has a constructor `new`
// that takes a config and any Transport as input.
let client = WorldClient::new(client::Config::default(), client_transport).spawn()?;
// The client has an RPC method for each RPC defined in the annotated trait. It takes the same
// args as defined, with the addition of a Context, which is always the first arg. The Context
// specifies a deadline and trace information which can be helpful in debugging requests.
let hello = client.hello(context::current(), "Stim".to_string()).await?;
println!("{}", hello);
Ok(())
}