mirror of
https://github.com/OMGeeky/gpt-pilot.git
synced 2025-12-27 14:49:11 +01:00
194 lines
6.6 KiB
Python
194 lines
6.6 KiB
Python
import json
|
|
import re
|
|
# from local_llm_function_calling import Generator
|
|
# from local_llm_function_calling.model.llama import LlamaModel
|
|
# from local_llm_function_calling.model.huggingface import HuggingfaceModel
|
|
from local_llm_function_calling.prompter import FunctionType, CompletionModelPrompter, InstructModelPrompter
|
|
# from local_llm_function_calling.model.llama import LlamaInstructPrompter
|
|
|
|
from typing import Literal, NotRequired, Protocol, TypeVar, TypedDict, Callable
|
|
|
|
|
|
class FunctionCallSet(TypedDict):
|
|
definitions: list[FunctionType]
|
|
functions: dict[str, Callable]
|
|
|
|
|
|
def add_function_calls_to_request(gpt_data, function_calls: FunctionCallSet | None):
|
|
if function_calls is None:
|
|
return
|
|
|
|
if gpt_data['model'] == 'gpt-4':
|
|
gpt_data['functions'] = function_calls['definitions']
|
|
if len(function_calls['definitions']) > 1:
|
|
gpt_data['function_call'] = 'auto'
|
|
else:
|
|
gpt_data['function_call'] = {'name': function_calls['definitions'][0]['name']}
|
|
return
|
|
|
|
# prompter = CompletionModelPrompter()
|
|
# prompter = InstructModelPrompter()
|
|
prompter = LlamaInstructPrompter()
|
|
|
|
if len(function_calls['definitions']) > 1:
|
|
function_call = None
|
|
else:
|
|
function_call = function_calls['definitions'][0]['name']
|
|
|
|
gpt_data['messages'].append({
|
|
'role': 'user',
|
|
'content': prompter.prompt('', function_calls['definitions'], function_call)
|
|
})
|
|
|
|
|
|
def parse_agent_response(response, function_calls: FunctionCallSet | None):
|
|
"""
|
|
Post-processes the response from the agent.
|
|
|
|
Args:
|
|
response: The response from the agent.
|
|
function_calls: Optional function calls associated with the response.
|
|
|
|
Returns:
|
|
The post-processed response.
|
|
"""
|
|
|
|
if function_calls:
|
|
text = re.sub(r'^```json\n', '', response['text'])
|
|
values = list(json.loads(text.strip('` \n')).values())
|
|
if len(values) == 1:
|
|
return values[0]
|
|
else:
|
|
return tuple(values)
|
|
|
|
return response['text']
|
|
|
|
|
|
class LlamaInstructPrompter:
|
|
"""
|
|
A prompter for Llama2 instruct models.
|
|
Adapted from local_llm_function_calling
|
|
"""
|
|
|
|
def function_descriptions(
|
|
self, functions: list[FunctionType], function_to_call: str
|
|
) -> list[str]:
|
|
"""Get the descriptions of the functions
|
|
|
|
Args:
|
|
functions (list[FunctionType]): The functions to get the descriptions of
|
|
function_to_call (str): The function to call
|
|
|
|
Returns:
|
|
list[str]: The descriptions of the functions
|
|
(empty if the function doesn't exist or has no description)
|
|
"""
|
|
return [
|
|
"Function description: " + function["description"]
|
|
for function in functions
|
|
if function["name"] == function_to_call and "description" in function
|
|
]
|
|
|
|
def function_parameters(
|
|
self, functions: list[FunctionType], function_to_call: str
|
|
) -> str:
|
|
"""Get the parameters of the function
|
|
|
|
Args:
|
|
functions (list[FunctionType]): The functions to get the parameters of
|
|
function_to_call (str): The function to call
|
|
|
|
Returns:
|
|
str: The parameters of the function as a JSON schema
|
|
"""
|
|
return next(
|
|
json.dumps(function["parameters"]["properties"], indent=4)
|
|
for function in functions
|
|
if function["name"] == function_to_call
|
|
)
|
|
|
|
def function_data(
|
|
self, functions: list[FunctionType], function_to_call: str
|
|
) -> str:
|
|
"""Get the data for the function
|
|
|
|
Args:
|
|
functions (list[FunctionType]): The functions to get the data for
|
|
function_to_call (str): The function to call
|
|
|
|
Returns:
|
|
str: The data necessary to generate the arguments for the function
|
|
"""
|
|
return "\n".join(
|
|
self.function_descriptions(functions, function_to_call)
|
|
+ [
|
|
"Function parameters should follow this schema:",
|
|
"```jsonschema",
|
|
self.function_parameters(functions, function_to_call),
|
|
"```",
|
|
]
|
|
)
|
|
|
|
def function_summary(self, function: FunctionType) -> str:
|
|
"""Get a summary of a function
|
|
|
|
Args:
|
|
function (FunctionType): The function to get the summary of
|
|
|
|
Returns:
|
|
str: The summary of the function, as a bullet point
|
|
"""
|
|
return f"- {function['name']}" + (
|
|
f" - {function['description']}" if "description" in function else ""
|
|
)
|
|
|
|
def functions_summary(self, functions: list[FunctionType]) -> str:
|
|
"""Get a summary of the functions
|
|
|
|
Args:
|
|
functions (list[FunctionType]): The functions to get the summary of
|
|
|
|
Returns:
|
|
str: The summary of the functions, as a bulleted list
|
|
"""
|
|
return "Available functions:\n" + "\n".join(
|
|
self.function_summary(function) for function in functions
|
|
)
|
|
|
|
def prompt(
|
|
self,
|
|
prompt: str,
|
|
functions: list[FunctionType],
|
|
function_to_call: str | None = None,
|
|
) -> str:
|
|
"""Generate the llama prompt
|
|
|
|
Args:
|
|
prompt (str): The prompt to generate the response to
|
|
functions (list[FunctionType]): The functions to generate the response from
|
|
function_to_call (str | None): The function to call. Defaults to None.
|
|
|
|
Returns:
|
|
list[bytes | int]: The llama prompt, a function selection prompt if no
|
|
function is specified, or a function argument prompt if a function is
|
|
specified
|
|
"""
|
|
system = (
|
|
"Help choose the appropriate function to call to answer the user's question."
|
|
if function_to_call is None
|
|
else f"Define the arguments for {function_to_call} to answer the user's question."
|
|
) + "In your response you must only use JSON output and provide no notes or commentary."
|
|
data = (
|
|
self.function_data(functions, function_to_call)
|
|
if function_to_call
|
|
else self.functions_summary(functions)
|
|
)
|
|
response_start = (
|
|
f"Here are the arguments for the `{function_to_call}` function: ```json\n"
|
|
if function_to_call
|
|
else "Here's the function the user should call: "
|
|
)
|
|
return f"[INST] <<SYS>>\n{system}\n\n{data}\n<</SYS>>\n\n{prompt} [/INST]"
|
|
# {response_start}"
|
|
|