Refactored AgentConvo.postprecess_response() into function_calling.process_json_response()

This commit is contained in:
Nicholas Albion
2023-09-22 22:41:38 +10:00
parent 4d91f381c1
commit 575c25902e
3 changed files with 102 additions and 48 deletions

View File

@@ -1,4 +1,3 @@
import json
import re
import subprocess
import uuid
@@ -6,9 +5,9 @@ from utils.style import yellow, yellow_bold
from database.database import get_saved_development_step, save_development_step, delete_all_subsequent_steps
from helpers.exceptions.TokenLimitError import TokenLimitError
from utils.utils import array_of_objects_to_string, get_prompt
from utils.function_calling import parse_agent_response
from utils.llm_connection import create_gpt_chat_completion
from utils.utils import get_sys_message, find_role_from_step, capitalize_first_word_with_underscores
from utils.utils import array_of_objects_to_string, get_prompt, get_sys_message, capitalize_first_word_with_underscores
from logger.logger import logger
from prompts.prompts import ask_user
from const.llm import END_RESPONSE
@@ -83,7 +82,7 @@ class AgentConvo:
if response == {}:
raise Exception("OpenAI API error happened.")
response = self.postprocess_response(response, function_calls)
response = parse_agent_response(response, function_calls)
# TODO remove this once the database is set up properly
message_content = response[0] if type(response) == tuple else response
@@ -174,32 +173,6 @@ class AgentConvo:
def convo_length(self):
return len([msg for msg in self.messages if msg['role'] != 'system'])
def postprocess_response(self, response, function_calls):
"""
Post-processes the response from the agent.
Args:
response: The response from the agent.
function_calls: Optional function calls associated with the response.
Returns:
The post-processed response.
"""
if 'function_calls' in response and function_calls is not None:
if 'send_convo' in function_calls:
response['function_calls']['arguments']['convo'] = self
response = function_calls['functions'][response['function_calls']['name']](**response['function_calls']['arguments'])
elif 'text' in response:
if function_calls:
values = list(json.loads(response['text']).values())
if len(values) == 1:
return values[0]
else:
return tuple(values)
else:
response = response['text']
return response
def log_message(self, content):
"""

View File

@@ -1,4 +1,5 @@
import json
import re
# from local_llm_function_calling import Generator
# from local_llm_function_calling.model.llama import LlamaModel
# from local_llm_function_calling.model.huggingface import HuggingfaceModel
@@ -40,6 +41,29 @@ def add_function_calls_to_request(gpt_data, function_calls: FunctionCallSet | No
})
def parse_agent_response(response, function_calls: FunctionCallSet | None):
"""
Post-processes the response from the agent.
Args:
response: The response from the agent.
function_calls: Optional function calls associated with the response.
Returns:
The post-processed response.
"""
if function_calls:
text = re.sub(r'^```json\n', '', response['text'])
values = list(json.loads(text.strip('` \n')).values())
if len(values) == 1:
return values[0]
else:
return tuple(values)
return response['text']
class LlamaInstructPrompter:
"""
A prompter for Llama2 instruct models.

View File

@@ -1,7 +1,64 @@
from local_llm_function_calling.prompter import CompletionModelPrompter, InstructModelPrompter
from const.function_calls import ARCHITECTURE, DEV_STEPS
from .function_calling import JsonPrompter
from .function_calling import parse_agent_response, LlamaInstructPrompter
class TestFunctionCalling:
def test_parse_agent_response_text(self):
# Given
response = {'text': 'Hello world!'}
# When
response = parse_agent_response(response, None)
# Then
assert response == 'Hello world!'
def test_parse_agent_response_json(self):
# Given
response = {'text': '{"greeting": "Hello world!"}'}
function_calls = {'definitions': [], 'functions': {}}
# When
response = parse_agent_response(response, function_calls)
# Then
assert response == 'Hello world!'
def test_parse_agent_response_json_markdown(self):
# Given
response = {'text': '```json\n{"greeting": "Hello world!"}\n```'}
function_calls = {'definitions': [], 'functions': {}}
# When
response = parse_agent_response(response, function_calls)
# Then
assert response == 'Hello world!'
def test_parse_agent_response_markdown(self):
# Given
response = {'text': '```\n{"greeting": "Hello world!"}\n```'}
function_calls = {'definitions': [], 'functions': {}}
# When
response = parse_agent_response(response, function_calls)
# Then
assert response == 'Hello world!'
def test_parse_agent_response_multiple_args(self):
# Given
response = {'text': '{"greeting": "Hello", "name": "John"}'}
function_calls = {'definitions': [], 'functions': {}}
# When
greeting, name = parse_agent_response(response, function_calls)
# Then
assert greeting == 'Hello'
assert name == 'John'
def test_completion_function_prompt():
@@ -62,23 +119,23 @@ Create a web-based chat app
Function call: '''
def test_json_prompter():
# Given
prompter = JsonPrompter()
# When
prompt = prompter.prompt('Create a web-based chat app', ARCHITECTURE['definitions']) # , 'process_technologies')
# Then
assert prompt == '''[INST] <<SYS>>
Help choose the appropriate function to call to answer the user's question.
In your response you must only use JSON output and provide no notes or commentary.
Available functions:
- process_technologies - Print the list of technologies that are created.
<</SYS>>
Create a web-based chat app [/INST]'''
# def test_json_prompter():
# # Given
# prompter = JsonPrompter()
#
# # When
# prompt = prompter.prompt('Create a web-based chat app', ARCHITECTURE['definitions']) # , 'process_technologies')
#
# # Then
# assert prompt == '''[INST] <<SYS>>
# Help choose the appropriate function to call to answer the user's question.
# In your response you must only use JSON output and provide no notes or commentary.
#
# Available functions:
# - process_technologies - Print the list of technologies that are created.
# <</SYS>>
#
# Create a web-based chat app [/INST]'''
def test_llama_instruct_function_prompter_named():