Files
tarpc/README.md
Tim Kuehn 7b7c182411 Instrument tarpc with tracing.
tarpc is now instrumented with tracing primitives extended with
OpenTelemetry traces. Using a compatible tracing-opentelemetry
subscriber like Jaeger, each RPC can be traced through the client,
server, amd other dependencies downstream of the server. Even for
applications not connected to a distributed tracing collector, the
instrumentation can also be ingested by regular loggers like env_logger.

 # Breaking Changes

 ## Logging

Logged events are now structured using tracing. For applications using a
logger and not a tracing subscriber, these logs may look different or
contain information in a less consumable manner. The easiest solution is
to add a tracing subscriber that logs to stdout, such as
tracing_subscriber::fmt.

 ##  Context

- Context no longer has parent_span, which was actually never needed,
  because the context sent in an RPC is inherently the parent context.
  For purposes of distributed tracing, the client side of the RPC has all
  necessary information to link the span to its parent; the server side
  need do nothing more than export the (trace ID, span ID) tuple.
- Context has a new field, SamplingDecision, which has two variants,
  Sampled and Unsampled. This field can be used by downstream systems to
  determine whether a trace needs to be exported. If the parent span is
  sampled, the expectation is that all child spans be exported, as well;
  to do otherwise could result in lossy traces being exported. Note that
  if an Openetelemetry tracing subscriber is not installed, the fallback
  context will still be used, but the Context's sampling decision will
  always be inherited by the parent Context's sampling decision.
- Context::scope has been removed. Context propagation is now done via
  tracing's task-local spans. Spans can be propagated across tasks via
  Span::in_scope. When a service receives a request, it attaches an
  Opentelemetry context to the local Span created before request handling,
  and this context contains the request deadline. This span-local deadline
  is retrieved by Context::current, but it cannot be modified so that
  future Context::current calls contain a different deadline. However, the
  deadline in the context passed into an RPC call will override it, so
  users can retrieve the current context and then modify the deadline
  field, as has been historically possible.
- Context propgation precedence changes: when an RPC is initiated, the
  current Span's Opentelemetry context takes precedence over the trace
  context passed into the RPC method. If there is no current Span, then
  the trace context argument is used as it has been historically. Note
  that Opentelemetry context propagation requires an Opentelemetry
  tracing subscriber to be installed.

 ## Server

- The server::Channel trait now has an additional required associated
  type and method which returns the underlying transport. This makes it
  more ergonomic for users to retrieve transport-specific information,
  like IP Address. BaseChannel implements Channel::transport by returning
  the underlying transport, and channel decorators like Throttler just
  delegate to the Channel::transport method of the wrapped channel.

 # References

[1] https://github.com/tokio-rs/tracing
[2] https://opentelemetry.io
[3] https://github.com/open-telemetry/opentelemetry-rust/tree/main/opentelemetry-jaeger
[4] https://github.com/env-logger-rs/env_logger
2021-04-01 17:24:34 -07:00

6.9 KiB

Crates.io MIT licensed Build status Discord chat

tarpc

Disclaimer: This is not an official Google product.

tarpc is an RPC framework for rust with a focus on ease of use. Defining a service can be done in just a few lines of code, and most of the boilerplate of writing a server is taken care of for you.

Documentation

What is an RPC framework?

"RPC" stands for "Remote Procedure Call," a function call where the work of producing the return value is being done somewhere else. When an rpc function is invoked, behind the scenes the function contacts some other process somewhere and asks them to evaluate the function instead. The original function then returns the value produced by the other process.

RPC frameworks are a fundamental building block of most microservices-oriented architectures. Two well-known ones are gRPC and Cap'n Proto.

tarpc differentiates itself from other RPC frameworks by defining the schema in code, rather than in a separate language such as .proto. This means there's no separate compilation process, and no context switching between different languages.

Some other features of tarpc:

  • Pluggable transport: any type impling Stream<Item = Request> + Sink<Response> can be used as a transport to connect the client and server.
  • Cascading cancellation: dropping a request will send a cancellation message to the server. The server will cease any unfinished work on the request, subsequently cancelling any of its own requests, repeating for the entire chain of transitive dependencies.
  • Configurable deadlines and deadline propagation: request deadlines default to 10s if unspecified. The server will automatically cease work when the deadline has passed. Any requests sent by the server that use the request context will propagate the request deadline. For example, if a server is handling a request with a 10s deadline, does 2s of work, then sends a request to another server, that server will see an 8s deadline.
  • Distributed tracing: tarpc is instrumented with tracing primitives extended with OpenTelemetry traces. Using a compatible tracing subscriber like Jaeger, each RPC can be traced through the client, server, amd other dependencies downstream of the server. Even for applications not connected to a distributed tracing collector, the instrumentation can also be ingested by regular loggers like env_logger.
  • Serde serialization: enabling the serde1 Cargo feature will make service requests and responses Serialize + Deserialize. It's entirely optional, though: in-memory transports can be used, as well, so the price of serialization doesn't have to be paid when it's not needed.

Usage

Add to your Cargo.toml dependencies:

tarpc = "0.25"

The tarpc::service attribute expands to a collection of items that form an rpc service. These generated types make it easy and ergonomic to write servers with less boilerplate. Simply implement the generated service trait, and you're off to the races!

Example

This example uses tokio, so add the following dependencies to your Cargo.toml:

futures = "1.0"
tarpc = { version = "0.25", features = ["tokio1"] }
tokio = { version = "1.0", features = ["macros"] }

In the following example, we use an in-process channel for communication between client and server. In real code, you will likely communicate over the network. For a more real-world example, see example-service.

First, let's set up the dependencies and service definition.


use futures::{
    future::{self, Ready},
    prelude::*,
};
use tarpc::{
    client, context,
    server::{self, Incoming},
};
use std::io;

// This is the service definition. It looks a lot like a trait definition.
// It defines one RPC, hello, which takes one arg, name, and returns a String.
#[tarpc::service]
trait World {
    /// Returns a greeting for name.
    async fn hello(name: String) -> String;
}

This service definition generates a trait called World. Next we need to implement it for our Server struct.

// This is the type that implements the generated World trait. It is the business logic
// and is used to start the server.
#[derive(Clone)]
struct HelloServer;

impl World for HelloServer {
    // Each defined rpc generates two items in the trait, a fn that serves the RPC, and
    // an associated type representing the future output by the fn.

    type HelloFut = Ready<String>;

    fn hello(self, _: context::Context, name: String) -> Self::HelloFut {
        future::ready(format!("Hello, {}!", name))
    }
}

Lastly let's write our main that will start the server. While this example uses an in-process channel, tarpc also ships a generic [serde_transport] behind the serde-transport feature, with additional TCP functionality available behind the tcp feature.

#[tokio::main]
async fn main() -> io::Result<()> {
    let (client_transport, server_transport) = tarpc::transport::channel::unbounded();

    let server = server::BaseChannel::with_defaults(server_transport);
    tokio::spawn(server.execute(HelloServer.serve()));

    // WorldClient is generated by the #[tarpc::service] attribute. It has a constructor `new`
    // that takes a config and any Transport as input.
    let mut client = WorldClient::new(client::Config::default(), client_transport).spawn()?;

    // The client has an RPC method for each RPC defined in the annotated trait. It takes the same
    // args as defined, with the addition of a Context, which is always the first arg. The Context
    // specifies a deadline and trace information which can be helpful in debugging requests.
    let hello = client.hello(context::current(), "Stim".to_string()).await?;

    println!("{}", hello);

    Ok(())
}

Service Documentation

Use cargo doc as you normally would to see the documentation created for all items expanded by a service! invocation.

License: MIT